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HYDROMAGNETIC WAVE PROPAGATION

IN A CONSTANT DIPOLE MAGNETIC FIELD

By John Carstolu

SUMMARY

The study begins with same formal apparatus of the theory (non-linear).

The analogue of Clebsch's transformation of the hydrodynamical equations

allows a useful representation for the magnetic field; this representation

leads in turn to some canonical equations for the motion of magnetic field

of great theoretical interest.

A theorem of decomposition of the magnetic field similar to the

Cauchy-Stokes decGnposition theorem in hydrodynamics is also here pre-

sented. The rest of the report deals with hydrGnagnetic w_ve propagation

in (i) a constant and uniform magnetic field; (ii) in a constant dipole.

The effect of compressibility is especially investigated in the case

of a constant and uniform magnetic field.

The disturbance is specified in terms of vorticity and current

density. It appears that the cGnpressibility of a medium acts as a wave

filter discriminating between components of vorticity (and current

density) and passing only those directed along the (undisturbed) magnetic
field.

The case of a dipole magnetic field presents a singular importance,

in view of its applications to geophysical phencmena, and is discussed in

some great detail. Dungey in his remarkable report of 1954 (The

Pennsylvania State University, lonisphere Research Laboratory, Scientific

Report No. 69) has already discussed the electrodynamic behavior of the

Outer Atmosphere in the presence of a constant-dipole magnetic field. In

this study, however, the problem is approached fram a different point of
view; the magnetohydrodynamic behavior of the fluid is discussed in terms

of vorticity and current density. The equations obtained are complicated,

however, and solutions are discussed only at large distances from the

center of the dipole.

The study of hydromagnetic wave propagation in a dipole is preceded

by a chapter where the geometry of lines of force is presented.
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INTRODUCTI ON

The theory of magnetohydrodynamic waves is the creation of Alfv_n

and WalSn. In his celebrated paper of 1942 [(i)] AlfvSn has shown that

waves can travel along magnetic lines of force in a conducting material;

s_e also Reference 2. WalSn, [(24)] in 1944, has discussed in some de-

tail these waves and has given the magnetohydrodynamic equations starting

with the principle of conservation of energy.

To these pioneer efforts other savants (Spitzer [(19)], Cowling [(7,

8)], Grad [(15)], Lighthill [(17)], and MacDonald [(18)3 ) added their

researches, resulting in the elegant theory of magnetohydrodynamic _ves

as presented, for instance, in Lighthill's great memoir of 1961. I._

earlier work consists mainly in analysis for the case of a compressible

fluid[(3,)3-

All this work presupposes a uniform magnetic field. Non-uniformity

of the magnetic field affects the theory both because the wave velocity

varies in magnitude and direction and because new forces are introduced.

The case of a dipole magnetic field is of particular importance, in view
o,

of its applications to geophysical phenc_ena. This revivifies Stormer's

work _22_ and other aurora theories. It is of great importance indeed

to know up to what an extent StSrmer's theory may be improved by using

the hydr_nagnetic approach, that is to say, assuming a fluid mechanics

continuum approximation.

Hydr_nagnetic wave propagation in a dipole magnetic field has

already been discussed in some detail by Dungey [(9_ • Om _ approach is,

however, more general and sets up the magnetohydrodynamic equations in

the Outer Atmosphere at large distances frc_ the earth.



In a subject which is developing so rapidly, this problem cannot be
discussed wlth any approach to finality, but this did not seemto be a
reason against writing these pages.

In Chapter I we rapidly review the basic equations of magnetohydro-
dynamics. The analogue of Clebsch's transformation of the hydrodynami-
cal equations allows a useful representation for the magnetic field;
this representation leads in turn to somecanonical equations for the
motion of magnetic field of great theoretical interest. The Chapter is
concluded with a theorem of decomposition for the rate of change of the
magnetic field similar to the Cauchy-Stokesdecomposition theorem in
hydrodynamics. Chapter II presents the theory of magnetohydrodynamic
waves in the presence of a uniform magnetic field. In Chapter III we
discuss in somedetail the geometry of dipole magnetic lines of force.
Chapter IV deals with magnetohydrodyna_icw_ves in a constant dipole mag-
netic field.

The material in this report summarizesthe results of researches
undertaken by the writer on the subject of Hydrc_agnetic WavePropagation
in an electrically conducting fluid of infinite extent embeddedin a con-
stant dipole magnetic field. This work has been supported by a contract
with the National Aeronautics and SpaceAdministration (Contract No.
NASr-18). The little time allowed to us to investigate the subject and
the canplexity of the problem have permitted only an exploratory effort.
The phenomena,as indicated by mathematical analysis, are no doubt very
complicated and considerable more effort is required in this direction.
It is hoped, however, that this pioneer effort may serve as an introduc-
tion to subsequent detailed investigations.

The author takes this occasion to express his gratitude to Dr. Robert
Jastrow for his interest in and support of this work.
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CHAPTERI

BASICCONCEPTS- THEEFFECTOFA MAGNETICFIELD

i.

are

The Basic Equations of Ma_netohydrodTrmmics

When the displacement currents may be neglected, Maxwell's equations

curl H = 4_J , (i)

_H

o_i __= -% _ , (2)

div H : o , (3)

where the electranagnetie variables are measured in electramagnetic units,

E and H are the intensities of the electric and magnetic fields, J is the

current density, and _e is the magnetic permeability. To canplete the

equations for the field, we need an equation for the current density.

Consider an electrically conducting fluid which has a conductivity

and executes motions described by the velocity v. The electric field it

will experience is E + _eZ x H, thus

£ = o(E + _e z X H) (4)

The equations (i) - (4) incorporate the effect of fluid motions on

the electromagnetic field. The inverse effect of the field on the motions

results fran the ponderamotive which the fluid elements experience by

virtue of their carrying currents across magnetic lines of force. This is

the Lorentz force given by

_e

_= PieJ X H = _-_ curl _H x _H . (_)

Including this force among other forces acting on the fluid, we have

the equation of motion

dv

p _ = div P + px + %{ x H_, (6)
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where D is the density, P__is the total stress tensor and _X represents the

external forces of non-electrGmagnetie origin.

In tensor notation, this equation can be written

(7)

where explicitly

2 (8)
Pij = -PSij + 2peij - _ _Sijekk '

and where p is the isotropic pressure, _ is the coefficient of viscosity,

and eij is the rate of deformation given by

(9)

For an incompressible fluid in which _ is constant and the forces X

derive frcm a potential - _, the equation of motion (7) simplifies to

_v.l _v" _eH"_Hil _ /_ P _e_l 2
(lo)

where v = _/O denotes the kinematic viscosit F.

In the general case, the equation of motion (7) has to be supple-

mented with the equation of continuity

_p
_+ .a_T_.(_j) = o ,

J

(ii)

and the heat equation. _@ shall not wu_ite down the heat equation assum-

ing in this study that our variables do not depend of temperature.



2. The Equation of Motion for the _netic Field

We shall now obtain an equation of motion for the magnetic field.

In view of further develol_uents, it is convenient to introduce here the

vector potential A and the electrostatic potential _, writing in the usual

way

H = curl A , (12)

div A = o , (13)

_A

E = - _ - grad _ . (14)

We then obtain according to equation (4)

IJ = _ _ - grad _ + _e v x curl (15)

Substitution into equation (1) gives

_A

= v x curl A - grad _ - Ve curl curl A , (16)

where ve = (4_eC) -I will be designated as the magnetic viscosity (see

Elsasser [(13)],page 21). It may be noted that ve like v is of dimen-
sions cm2 sec -I.

Taking the curl of terms of equation (16) and assuming v
e

stant, we obtain (in Cartesian coordinates)

a con-

_H

V_H (17): c l(z + ve _ ,

which is the equation of motion governing magnetic field. Equation (17)

is general; it is not restricted either to incempressible fluids or to
inviscid fluids.

The case when the electrical conductivity of the medium may be con-

sidered as infinite is a particular interest in cosmic electrodyns_ics.
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The magnetic viscosity is then zero, and equations (16) and (17) reduce

respectively to

_A
m

3-t = _ x curl A - grad _ , (18)

_H
m

5Y = c_l(z x _) , (19)

Equations (18) and (19), especially the latter, have been the object

of considerable research in the literature. We may notice at once its

full analogy with the Helmholtz equation for the vorticity. This immedi-

ately permits to apply mutatis mutandis the classical and elegant results

of the theory of vorticity to the magnetic field. In particular, it

follows that the lines of force move with the fluid. For further details

of this ana!ogywe refer to Goldstein's Lectures on Fluid Mechanics [(14)7,

page 76.

3. The Elsasser-Carstoiu Theorem

Equation (19) may be put in a form which is reminiscent of the

Cauehy-Stokes decomposition of an arbitrary instantaneous continuous

motion of a fluid (see for instance Truesdell [(23)_, page 65). Equiva-

lent to the basic equation (19) is

d IHil Hj 8v i (2o)

where the equation of continuity (ll) has been used. Equation (20) can

be rewritten

bY°

_1 -S--J =_ -

H kv _v.
--j i + (2l)

+_'p

where, besides the rate of deformation eij , the vorticity _ = _ij:

(22)

appear under its tensor cemponents. _ can write
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IHiI i _G
H.

___ =_Am +
dt pj p lj

(23)

or in vector notation

H

- _ Grad H G=gDX--+

1

(24)

where we set

G = eijHiHj ,
(25)

and the gradient is taken with respect to Hi.

Equation (24) shows that the rate of chan_e of the magnetic field

may be conceived as made up of two parts. The first part expresses a

rotation of the field with the fluid particle_ the second part shows that

the terminus of H is moving in the direction of the normal to that

quadric of the system:

eijXiX j = const.
(26)

on which its terminus lies.

In this form the theorem has been stated by the writer E(4£. An

integral formulation closely related to this has been earlier given by

Elsasser [(Ii,12_.

4. The Analogue of the Clebsch Transformation

A matter of interest in cosmic electrodynsmics is the analogue of the

Clebsch transformation of the hydrodynamical equations (see lamb E(16)],

page 248). Putting

A = grad P + _ grad _ (27)

one has

H = curl(_ grad 4) = grad _ x grad (28)



The representation (28) is identical to that given by Sweet [(21)]
(see also Dungey [(10)], page 31) with the exception of a factor F, func-

tion of _ and 4 only, which appears on the right side of (28) in Sweet's

representation. However, it can be shown that Sweet's and our repre-
sentation are equivalent (see Lamb, loc. cit.).

The immediate consequences of formula (28) namely

• grad m = H . grad 4 = 0 (29)

show that the magnetic field is tangent to the surfaces m = const, and

= const._ which we shall call surfaces of force, and which correspond to

vortex surfaces in hydrodynamics. It is evident that their intersections
are the lines of force.

5. Hamiltonian Form for the Equation of Motion for the Magnetic Field

Let us now came back to equation (18) and substitute thereto the

value of A given by (27). We have

(grad P + _ grad 4) = v x (grad _ x grad 4) grad

: (_ • grad 4)grad _ - (X • grad _)grad 4

- grad _ , (3o)

which can be written

d_ grad 4 d4
d-_ - _grad _ = -grad_ ,

where

(31)

=3y+m +¢ (32)

Scalar multiplication of terms of equation (31) by grad _ x grad 4
gives

grad_. (grad _ x grad 4) = 0 ,

that is the Jacobian

(33)

8



_C_,_,,) (34)_,y,z) :o .

This shows that#_ is of the form_(_,*,t). Hence

_ _ (3_)
grad_ = _ grad @ + _ grad _ .

Camparison of equations (31) and (3_) gives at once the Hamiltonian sFstem.

d_ b_ d_ b,,_ ( 36 )
d_ =-_ ' d_-'-_"

Equations (36) are analogous to Stuart's equations in hydrodynamics (see

Lamb, loc. cit.) and were derived by this writer in a recent paper [(6)].
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CHAPTh_ II

MAGNETOHYDRODYNA_£IC WAVES IN A CONSTANT AND UNIFORM MAGI_TIC FIELD

6. The Case of an Incompressible Fluid

8_. We begin with a discussion due to Wal_n [(24)] (see also Cowling [(7,Consider an infinite mass of uniform fluid, at rest, embedded in a

constant and uniform magnetic field _o" We assume this fluid to be an
invlscid, incompressible and perfectly conducting material (c--_oo).

Suppose that as a result of a perturbation, a velocity field v is pro-

duced in a certain region, and that the magnetic field becomes Ho + h.
The equations giving the variations in v and h are

_v _e

%_:-gradp+0_+_o_lhx(_+h) , (37)

_h

where we have included the gravitational potential

: - grad n , (39)

p is the uniform density of our fluid, and the term (v -_) v has been
_itted. - -

Now, since H = constant and
--o

div v = 0 , (40)

divh = 0 ,

equations (37) and (38)

_v #

P O _ = - grad Ip +

8h
I__

V)v

simplify to

_e_ " _ _/ %

(41)

(42)

(43)
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by neglecting squares and products of the small quantities h,v.

the divergence of equation (42); we have

Ip %_. h )div grad + 4_ + po fl = 0 .
\

In Cartesian coordinates equation (44) becomes

4_ + Po _ =0,

since p + (_eHo .h)/4x + po_ has no singularities and is bounded,

p + + po _ = constant .

_o.ke

(44)

(45)

(46)

Hence, equation (42) beccmes

8v

4_poy_=%(_ v)h, (47)

For simplicity take Oz parallel to H . Then equations (47) and (43)
become -o

_v _h

4_Po Y_- = _eno _zz ' (48)

Sh Sv

= _o_z • (49)

Hence, by cross differentiation

_2 _2 v

X _ A2 _

_t 2 o _z 2 '
(50)

Ii



_2h _2h
--= A2 -

_t 2 o _z2 '
(51)

where

o (52)

is the Alfv_n's phase velocity, named so in honor of its discoverer. Thus

the disturbance can be expressed as the resultant of two sets of waves

traveling with velocities _A o in the z-direction, i.e., along the lines of

force of the undisturbed field. These waves are called magnetohydrodynamic
(m.h.) waves.

After the two waves have separated we have in either of the waves

6v _v

8-_-=+A (53)-- 0 _'Z '

the sign depending on the direction of propagation of the wave considered.

Comparison of equations (49) and (93) gives

Hvo- = + v . (54)Ao w-Qj-

Before going farther, we note, that in considering the propagation

described by Alfv_n, the velocity X and the magnetic field h can be replaced

by the vorticity _ and the current density _ = (1/4_)curl h-respectively;

for one has similar equations for these quantities, namely

_2 _2

- = A2 -

_t 2 o _z 2 '
(55)

_2A A2 _2A

_t 2 o _z 2 '
(56)

12



together with the relation

0

j = +_-_o __=+ __.
(57)

7. C_npressible Fluid - Vorticity and Current Density Propagation

In taking this point of view as a point of departure, we shall show

that in the case of a compressible medium the components of _ and J in the

direction of the field only are _ro_agated in Alfv@n's manner. Thus,

surprisingly enough, the compressibility of a medium acts as a wave filter

discriminating between cam_onents of vorticity and current density and

passing only those directed along the (undisturbed) magnetic field. The

proof goes like this. When the compressibility is taken into account, the

linearized system replacing equations (42) and (43) is

8v _eHo 8h

_o_ : -g_ad¢ + -_- _ , (78)

8h 8v

3_ = Ho _z - Ho div _v, (79)

where we set

: P + 4_ + pon (6o)

Equations (40) and (41) are replaced by

8p
_-t+ Po div _ = 0 ,

(61)

div h = 0 , (62)

where p is the perturbation in density. We shall assume that

p : a_ , (63)

where a is the ordinary sound speed in the absence of a magnetic field.
O
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Taking the curl of terms of equations (58) and (59) we obtain

2Po _-t = _eHo _z ' (6_)

4x _ = 211o _z + -oH x grad div _v,

which imply important consequences, as will be shown.

(a) Pro_a_ation of z-C_nponents of Vorticity and Current Density

Equations (54) and (65) when projected on the 0z axis give

_mz _Jz
2P ° -_-- = _eHo (66)

_Jz _mz

2_-_-_- = Ho _--_-z (67)

He nc e

_2 _2 m

z _ A2 z

_t 2 o _z 2 '
(68)

and

2. _2jz
Jz = A 2

_t2 o _z2 '
(69)

H
o

Jz = + 2_ mz (70)
O

Thus, the components of m and j along the lines of force (longitudinal

components) are propacated in _he opposite directions of the undisturbed
field with velocities +A

- o

14



The coupling relationship (70) between longitudinal components shows

that (i) it does not depend on the magnitude of the magnetic field pres-

ent; (ii) the vanishing of either component involves the vanishing of the

other; this occurs when either quantity is zero initially.

(b) Equations for the Transverse Canponents

It may be noted that although ah and Jz are propagated one-dimensionally,

along the magnetic lines of force, no other component of vorticity and cur-

rent density is; the x- and y-c_nponents of vorticity and current density

satisfy

_2x A2_2x *o_ _p
_t 2 O _z 2 2p ° _ '

(71)

_2 _2 A2
A2 ___X o 33p

_t 2 o _z2 = - 2p-__ '
(72)

and

_2j x

_t 2

.

A 2 _ Jx Ho _3p

o 3z 2 4_p ° _t2_y '

(73)

-A2 H= o 33p

_t 2 o _z2 _-_Po _t2_x '
(74)

showing that only for incompressible flow do they satisfy the same equa-

tions as ah and Jz; in a compressible flow their oscillations are coupled

to those of density.

8. Wave-Motion E_uations for the Density and Transverse Components

Differentiation with respect to t of equation (25) gives

A2o_o
°_2_:a_ . _h
8t 2 O _O '

(7_)

15



where the equations (58) and (63) have been used, and the gravitational

potential has been cmitted. Now

Hence, the density satisfies

_ = ao_7 p + m
_t 2 Ho

(77)

To obtain an equation for p alone, we eliminate Jx and jy between equa-
tions (73), (74), and (77)- The result is

a2o_p) = A2 82 /82p 82DIo +
,(78)

where a two-dimensional Laplacian appears. This equation shows plainly

the radical departure of the "new sound-wave equation" from the ordinary

sound equation in the absence of a magnetic field.

We may ask now if it were possible to satisfy both equations (78)

and

_2_.._pp_ a2_p = 0 .

_t 2 o
(79)

Then, by virtue of the former, we must have

_2p + ___2P = 0 ,

_x 2 _y2

and hence equation (79) reduces to

(8o)

_2p 2 _2p
_- a --=0
_t 2 0 _Z 2 '

which admits a solution of the form

16
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"" ei (d]t-Fz) (82)p =

provided that

2

2 _ (83)
7 = -_ •

a
o

We can now easily verify that (82) is effectively a particular solu-

tion of equation (78) under condition (83). Thus sound w_ves appear

possible in a conducting fluid penetrated by a uniform magnetic field,

with this great difference that they do not spread out three-dimensionally

as in ordinary acoustics; instead, they propagate (without attenuation)

one-dimensionally, along the magnetic lines of force. It is also inter-

esting to note that in contrast to m.h. waves, this propagation does not

depend on the magnitude of the magnetic field present.

Equation (78) can be rewritten as follows

2 ) a2A2 _2% + + oo = o (8_)

Differentiation with respect to t of terms of equation (84) yields an

equation given by Lighthill _17_ for the expansion A = div _.

Let us come back to equations (71) - (74) and improve our results.

Elimination of p between equations (71) and (84) and then between (72) and

(84) gives

+(ao _z 2

_2[_2 la2 A2)_2) + a2A2 _2 211 c_x
= o . (8_)

Similarly, elimination of p bet_¢een equations (73), (74) and (84) gives

17



A__2r_2f_2 2 _2_ a2A232 21_ jx
= 0 . (s6)

Equations (49) and (50) show that the quantities

o o _ jjx,jy
(87)

are propagated along magnetic lines of force at Alfv_n velocity Ao. These
quantities are identical zero if they were zero initially; under this con-

dition, equations (85) and (86) reduce to fourth-order equations of the
same type as equation (84).

18



CHAPTER III

THE CEOI,_fRY OF DIPOLE r&_GNETIC LINES OF FORCE

9. Preliminaries

The equations of motion in the case of a constant magnetic dipole are

complicated and require some detailed discussion of the geometry of the

magnetic lines of force. St_rmer _22)] was the first to use in his equa-

tions the arc s of a line of force, instead of the time (see his book,

page 215). He also calculated the radius of curvature of the trajectories

in the equatorial plane of the dipole (loc. cit., page 221). Also, other

authors used at least the element of length of magnetic lines of force in

various of their calculations. However, nowhere do we find a detailed

discussion of the geometry of these lines. In this Chapter, we propose

to fulfill this need by a systematic account of the geometry of magnetic

lines of force for the case under consideration.

i0. Equations of Lines of Force and Linear Element

As well known, a dipole magnetic field has components

2 3z2
H = -M 3xz = -M ]yz :-Mr - (88)
X _' y #' Z r5 '

2 2 y2 2where M is the magnetic moment of the dipole, r = x + + z , and the

sign is chosen such that Hz is positive in the x,y plane, which is the

equatorial plane of the dipole; this requires that the dipole has its

negative pole directed upward.

The differential equations of lines of force are

dx = dy = dz (89)

-3xz -3yz x2 + y2 _ 2z 2

The first two equations give at once

y = Cx ,

where C is a constant. E_ation (90) represents a family of planes

through 0z axis.

(9o)
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Then, by virtue of (90), the last two equations give

dz 2z 2 - A2x 2

dx 3xz

A2=I+C 2

(91)

(92)

This is a homogeneous equation of the first order.

the equation beccmes

On substitution of

(93)

dx 3udu

2 A2X U +

(94)

in which the variables are separated; the solution is

2

3 B(u2 + A21X ---- (95)

B being a constant of integration.

4
2

x_ = B(x2 + y + z2) ,

Hence

(96 )

that is

2

x 3 = ar ,

where a = _.

We now introduce the polar coordinates

x = r cos _ cos k

y r sin _ cos k

z r sin £ ,

(97)

(98)

2O



where k designates the magnetic latitude.
equation (97) becomes

2cos _ cos2 L = a3r

To eliminate _, we w_ite

In these coordinates,

JJ

= C = tan _ . (i00)
X

Hence

2 I (ioi)
cos _ C2 + l

and equation (99) becomes

2 (Io2)r =r cos _ ,
o

where we put r0 : i/[a3(C 2 + !)]. Equation (102) is the equation of lines

of force in each meridian plane; it is obvious that r o is the value of r
for k = 0 (in equatorial plane).

In Cartesian coordinates, we have the following parametric equations

of the line of force

r cos
X -- _

_fC2 + 1

Cr cos
y =

]- c2+ 1

z = r sin k .

(lO3)

To calculate the linear element of these lines we may use either equation

(102) and then

21



ds2 = dr2 + r2dk2 ,

or the parametric equations (103) and then we have

(io4)

ds 2 = d_x2 + dy 2 + dz 2

The result is

i

ds = rdX(l + 4 tan 2 _)2

Ii. The F_enet Formulas for a Line of Force

The tangent to a line of force is defined by

dx 3 sin

+ 1 + g tan 2 _.

= dy = 3C sin

ds /_c_+_/1+4tan__

dz

ds

(i - 2 tan 2 k)cos k

_i+ 4 tan 2 k

(ion)

(lO6)

(107)

We next calculate the quantities dgz/ds, d_/ds, dT/ds. One has for
instance,

d_ d_ dk
ds dk ds ' etc.

After same calculation, we obtain

22



da _ 3 cos k i - 4 tan 2 k .I

d-_ = &2 + I r(l + 4 tan 2 k)2 I
d_ _ -3C cos k i 4 tan 2 k .

ds _C 2 + i r(l + 4 tan 2 k)2 '

(io8)

dT

ds

-9 sin k(l + 2 tan 2 k)

r(l + 4 tan 2 k)2

The radius of curvature O is given by

9(i + 2 tan 2 k)2

r2(l + 4 tan 2 k)$

(109)

In the equatorial plane

r
r o

0=3 3 "
(]_to)

As a verification of result (109), we may use the fol_uula

p

3_

(r2 + r,2)2
2 2 ,,

r + 2r' - rr

(11z)

One has

23



2
r =r cos _,

0

r' = -2r cos k sin _ ,
0

" (cos 2 k- sin 2 k)
r = -2r °

(112 )

Henc e

p 2
cos

3

ro3(COS 4 % + 4 cos 2 % sin 2 %)2

%[cos 2 k + 8 sin 2 % + 2(cos 2 k - si2 %)]

3
2

r cos _(i + 4 tan 2 _)2
0

3(i + 2 tan 2 _)

(i13)

which checks our earlier result (109).

The _rinci_al normal_ which in our case reduces to the normal of

lines of force as these are plane curves, is determined by

d_ cos k i - 2 tan 2 k

C_+ i Jl + 4 tan2 k

<s
_l = p d-_=

C cos k i - 2 tan 2 k

C_ + iJl + 4 tan2 k

d7 3 sin k

T1 = 0 d-_ = - _lt + 4 tan 2 k

The binormal of lines of force is, of course_ the unit normal to the

planes y = Cx; therefore, its direction causes are
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C i

_2 = , r62 = , 72 = 0
(zz5)

Therefore, direct application of the _h-enet formulas has to give the

above results. This will verify our previous results. One has

_2 = _71 - _51 =

_C2+I

! [q sin 2 )_+c°s 2

i + 4 tan 2 k L" k(l-2 tan 2 _)2]

2
C cos k

- C2_ ---'- i + 4 tan 2 k

(i + 5 tan 2 k + 4 tan 4 k)

2
C cos k

C2_--_+ ] i + 4 tan 2 k

(1 + 4 tan 2 k)(1 + tan 2 k)

C
(i16)

Also

G2 = 7_I - CZTl = -

i
(117 )

72 = C_I - _(_i = 0 ,
(118)

which values agree with those given by (115).
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CHAPTER IV

MAG_gETOHYDRODYI_L_$_C WAVES IN A CONSTANT DIPOLE MAGNETIC FIELD

12. Preliminaries

Oungey [(9)] in his remarkable report of 1954 has discussed in some

detail the electrodynamic behavior of the Outer Atmosphere in the pres-

ence of a constant dipole magnetic field. We shall here approach the

problem from a different point of view, however, concentrating our atten-

tion, as we did in Chapter II, on the vorticity field and the current

density.

Consider an infinite mass of an electrically conducting fluid at

rest embedded in a constant dipole magnetic field H. To simplify the

discussion, take the conductivity as infinite and assume the fluid to be

a homogeneous incompressible material. Assume that as a result of a per-

turbation, a velocity X is produced in a certain region and that the

magnetic field becanes H + h. The amplitude is assumed to be small

enough for non-linear terms to be neglected. We propose to investigate

the magnetohydrodynamic behavior of the fluid in terms of generalized
A]_fv_n raves.

13. Fundamental Equations

The relevant equations for the problem are

by

Po _Y = -gradp + _e2 x __, (iZg)

_h

-- (E" _7)z- (z- v)_H, (z2o)

div v = 0 , (121)

div h = 0 , (122)

the condition 8H_t = O(constant dipole) has been used in equation (120).

Since curl H = O, equation (119) can be rewritten as follows
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Taking the curl of terms of equations (123) and (120) we obtain

_o _e

._j
(ms)

We have

bH bH

eurlE(_H • V)h + (h • V)H_] = 4_r(H • V)_ + grad h x - + grad h x -.... x _ y

bH _h bh

+ grad h z X_zz +grad H x_ +grad HyXy_y

_h

+ grad Hz x _z " (126)

After some calculation, we obtain

(127)

where the condition curl H = 0 has been used.

Hence equation (124) can be written

(m8)

On the other hand,

ou_l[(_• v)z - (x v)_]: 2(_H•v)__+ grad%
8v 8v

x _ + grad __ ®y

bz [g bE
- X+ grad Hz x _z rad vx _x

BE _8_]+ grad Vy x _y + grad vz x
(129)

27



In this case, there is, however, no simple way to write vectorially

equation (125) in a compact form; we have for ccmponents the following

equations

bjx bH bH bH
---- X Z_ _ [(_°_)_-]x+_ °_+@ °_+_ °33

_j _H 3H 3H z

2_ _t = (H • V) Y _-z ell el2 _z el 3

/_H _H 3H 31
-l_X e31 + _x e32 + _x e3 '

bJz bH bH bH

x _ z+ _x el2 + e22 + _x e23

f3Hx aH 3Hz 31-/_ eli + _y el2 + _-e I ,
(13o)

where e_ is the rate of deformation and where again this condition
mJ

curl H = 0 has been used.

14. Propagation at l_rge Distances

These equations are rather cGnplicated. We may simplify them by

observing that the derivatives of the components of the dipole magnetic

field are the order of r -4 while these camponents themselves are of the

order r-3. Therefore for r sufficiently large, we may neglect the term

(_ • v)H in equation (128) and similarly we may neglect all terms such as

(SHx/_Y)e31 , etc., in equation (130). Hence, for r sufficiently large,

equations (128) and (130) reduce to

b_ <Hx 8A 8A 8_)2%_:% _x + _+ H , (131)

and
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2,, _ = _x _x + _ _+ Ez _ " (132)

In the second place, we have a long a line of force

ds ' H = H , H = H dzy z ds '

where H is the magnitude of the dipole magnetic field and ds the element

of length of line of force. Hence along a line of force, equations (131)

and (132) simplify to

2P o _ = laeH _ + _yy + _ ,
(134)

and

2,_ = H Ts + _+_dzds

/

(135)

that is

2P O _"_= _eH_5"-_s , (19)

(137)

Observing that 8H_t = 0 (constant dipole), we obtain by cross-

differentiation

_2 _2 1 _2 _._

_2_= A2 a2_ 1 _2 _

where

(138)

(139)
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A2 - e
4_P o

_e_ cos 2 %(i + 4 tan 2 k)

r6

2 1 + 4 tan 2 k

= 7 6 i0
r cos
O

(14o)

where we put

2 _e _'_

7 - 4_Po
(141)

We achieve the reduction of these equations by taking instead of s

the magnetic latitude k as independent variable. _ have

and

_2_ _ _2 id%12_ _ d2 k

_s 2 _2 _ds] + d_ ds 2 '

)]d2% _ d dk dk

as2 _

(143)

(144)

Now (see Chapter III, equation (106))

d& i

ds i '

2
r cos k(l + 4 tan 2 k)_
0

(_45)

therefore, we have
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d2_ 2 tan k(2 tan2 k - i)

ds--_= r 2 cos4 _(i + 4 tan2 _)2 "
o

(_46)

On the other hand

_A2 _ d_
ds d_ ds '

and

672(3 + 8 tan 2 k)tan _ 8_--

8 14
r cos _(i + 4 tan 2 k) _ "
o

(_47)

(_4a)

Substitution of these values in equation (138) gives

82 2 1 + 4 tan 2 k[82_- i

2 48t2_ = _ ro6 coslO k ro cos k(l + 4 tan 2 k)

8_ 2 tan k(2 tan 2 k - l) + _-_ 7
+ _-k 2 e°s 4 k(l + 4 tan 2 %)

r o

3 tan k(3 + 8 tan 2 k)

8 14
r cos k(1 + 4 tan 2 %)
o

(149)

that is

8t2_ = rob cosl4 kL_X2 + 7 tan % " Ok] '

(i5o)

and a similar equation for _.

_(k,t) = Ae i_t _l(k) ,

we get

Supposing that

(i5i)
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a2_-i _ A2r8 14
dk2 +7 tan k _ + _ o cos k • _-i = 0

(152)

_here _2 = _172.

15. Integral Equations for Vortieity and Current Density

Equation (152) can be transformed in an integral equation similar to

that given by Dungey (see Reference 9, page 33). In order to do this we

use the identity

?k[ sec k _ (-_i sec3 k)] = sec k[_+ 7 tan k d---_

+ 3(1 + 5 tan2 k)_]
(153)

Hence equation (152) can be written

dk ec k _k (_-i sec3 _) = (1 + 5 tan 2 k)sec k

-2r8 cosl3 ]k]__lsec 3- _ o k (154)

or, by putting __ = _i see3 k,

d[ d_l [3 -2r8 cosl3 _sec k = (i + 5 tan2 k)sec k - _ o (155)

Assuming that for k = O, d_dk = O, i.e., ____/dk = O, we obtain the
following integral equation

k k'

__(k) = _(0)+Zcos k' dk'Z[3(l + 5 tan 2 k")sec k"

o o

-2r8 k"]_ k")ak"- _ o c°sl3 O( (_56)

Z92



which, curiously enough, has the sameform as the equation given by
Dungey (loc. cit., page 33) but is of vectorial character of and includes
an additional term 3(1 + 5 tan2 _)sec _; the variables and assumptions

used to arrive at this result differ ratically from those used by Ikungey.

The quantity J(k) = _l(k)sec3 k verifies, of course, the same

equation (156). Equation (ID6) may be integrated by successive approxi-
mations.

Sylvania Electric Products, Inc.

Waltham, Massachusetts

May l, 1962
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